The Recognition of Simple-Triangle Graphs and of Linear-Interval Orders Is Polynomial
نویسنده
چکیده
Intersection graphs of geometric objects have been extensively studied, both due to their interesting structure and their numerous applications; prominent examples include interval graphs and permutation graphs. In this paper we study a natural graph class that generalizes both interval and permutation graphs, namely simple-triangle graphs. Simple-triangle graphs – also known as PI graphs (for Point-Interval) – are the intersection graphs of triangles that are defined by a point on a line L1 and an interval on a parallel line L2. They lie naturally between permutation and trapezoid graphs, which are the intersection graphs of line segments between L1 and L2 and of trapezoids between L1 and L2, respectively. Although various efficient recognition algorithms for permutation and trapezoid graphs are well known to exist, the recognition of simple-triangle graphs has remained an open problem since their introduction by Corneil and Kamula three decades ago. In this paper we resolve this problem by proving that simple-triangle graphs can be recognized in polynomial time. As a consequence, our algorithm also solves a longstanding open problem in the area of partial orders, namely the recognition of linear-interval orders, i.e. of partial orders P = P1 ∩ P2, where P1 is a linear order and P2 is an interval order. This is one of the first results on recognizing partial orders P that are the intersection of orders from two different classes P1 and P2. In contrast, partial orders P which are the intersection of orders from the same class P have been extensively investigated, and in most cases the complexity status of these recognition problems has been established.
منابع مشابه
Recognizing Simple-Triangle Graphs by Restricted 2-Chain Subgraph Cover
A simple-triangle graph (also known as a PI graph) is the intersection graph of a family of triangles defined by a point on a horizontal line and an interval on another horizontal line. The recognition problem for simple-triangle graphs was a longstanding open problem, and recently a polynomial-time algorithm has been given [G. B. Mertzios, The Recognition of Simple-Triangle Graphs and of Linea...
متن کاملTenacity and some other Parameters of Interval Graphs can be computed in polynomial time
In general, computation of graph vulnerability parameters is NP-complete. In past, some algorithms were introduced to prove that computation of toughness, scattering number, integrity and weighted integrity parameters of interval graphs are polynomial. In this paper, two different vulnerability parameters of graphs, tenacity and rupture degree are defined. In general, computing the tenacity o...
متن کاملA recognition algorithm for simple-triangle graphs
A simple-triangle graph is the intersection graph of triangles that are defined by a point on a horizontal line and an interval on another horizontal line. The time complexity of the recognition problem for simple-triangle graphs was a longstanding open problem, which was recently settled. This paper provides a new recognition algorithm for simple-triangle graphs to improve the time bound from ...
متن کاملCubic symmetric graphs of orders $36p$ and $36p^{2}$
A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we classifyall the connected cubic symmetric graphs of order $36p$ and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.
متن کاملON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS
Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 29 شماره
صفحات -
تاریخ انتشار 2013